Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator

Abstract
Stem cells are essential for tissue generation during the development of multicellular creatures, and for tissue homeostasis in adults. The great therapeutic promise of stem cells makes understanding their regulation a high priority. PUF RNA-binding proteins have a conserved role in promoting self-renewal of germline stem cells. Here we use a genome-wide approach to identify putative target mRNAs for the Caenorhabditis elegans PUF protein known as FBF. We find that putative FBF targets represent ∼7% of all protein-coding genes in C. elegans, implicating FBF as a broad-spectrum gene regulator. These putative FBF targets are enriched for regulators of meiotic entry and other components of the meiotic program as well as regulators of key developmental pathways. We suggest that these targets may be critical for FBF’s role in stem cell maintenance. Comparison of likely FBF target mRNAs with putative PUF target mRNAs from Drosophila and humans reveals 40 shared targets, including several established stem cell regulators. We speculate that shared PUF targets represent part of a broadly used module of stem cell control.