Impact of Oxidation Catalysts on Exhaust NO2/NOx Ratio from Lean-Burn Natural Gas Engines

Abstract
Oxides of nitrogen (NOx) emitted from internal combustion engines are composed primarily of nitric oxide (NO) and nitrogen dioxide (NO2). Exhaust from most combustion sources contains NOx composed primarily of NO. There are two important scenarios specific to lean-burn natural gas engines in which the NO2/NOx ratio can be significant: (1) when the engine is operated at ultralean conditions and (2) when an oxidation catalyst is used. Large NO2/NOx ratios may result in additional uncertainty in NOx emissions measurements because the most common technique (chemiluminescence) was developed for low NO2/NOx ratios. In this work, scenarios are explored in which the NO2/NOx ratio can be large. Additionally, three NOx measurement approaches are compared for exhaust with various NO2/NOx ratios. The three measurement approaches are chemiluminescence, chemical cell, and Fourier-transform infrared spectroscopy. A portable analyzer with chemical cell technology was found to be the most accurate for measuring exhaust NOx with large NO2/NOx ratios.