Next-to-Next-to-Leading-Order Subtraction Formalism in Hadron Collisions and its Application to Higgs-Boson Production at the Large Hadron Collider

Abstract
We consider higher-order QCD corrections to the production of colorless high-mass systems (lepton pairs, vector bosons, Higgs bosons, etc.) in hadron collisions. We propose a new formulation of the subtraction method to numerically compute arbitrary infrared-safe observables for this class of processes. To cancel the infrared divergences, we exploit the universal behavior of the associated transverse-momentum (qT) distributions in the small-qT region. The method is illustrated in general terms up to the next-to-next-to-leading order in QCD perturbation theory. As a first explicit application, we study Higgs-boson production through gluon fusion. Our calculation is implemented in a parton level Monte Carlo program that includes the decay of the Higgs boson into two photons. We present selected numerical results at the CERN Large Hadron Collider.