Abstract
Campylobacter jejuni is an important bacterial pathogen causing gastroenteritis in humans. C. jejuni is capable of natural transformation, which is considered a major mechanism mediating horizontal gene transfer and generating genetic diversity. Despite recent efforts to elucidate the transformation mechanisms of C. jejuni , the process of DNA binding and uptake in this organism is still not well understood. In this study, we report a previously unrecognized DNA-binding protein (Cj0011c) in C. jejuni that contributes to natural transformation. Cj0011c is a small protein (79 amino acids) with a partial sequence homology to the C-terminal region of ComEA in Bacillus subtilis . Cj0011c bound to both single- and double-stranded DNA. The DNA-binding activity of Cj0011c was demonstrated with a variety of DNAs prepared from C. jejuni or Escherichia coli , suggesting that the DNA binding of Cj0011c is not sequence dependent. Deletion of the cj0011c gene from C. jejuni resulted in 10- to 50-fold reductions in the natural transformation frequency. Different from the B. subtilis ComEA, which is an integral membrane protein, Cj0011c is localized in the periplasmic space of C. jejuni . These results indicate that Cj0011c functions as a periplasmic DNA receptor contributing to the natural transformation of C. jejuni .