Zero-temperature properties of the quantum dimer model on the triangular lattice

Abstract
Using exact diagonalizations and Green’s function Monte Carlo simulations, we have studied the zero-temperature properties of the quantum dimer model on the triangular lattice on clusters with up to 588 sites. A detailed comparison of the properties in different topological sectors as a function of the cluster size and for different cluster shapes has allowed us to identify different phases, to show explicitly the presence of topological degeneracy in a phase close to the Rokhsar-Kivelson point, and to understand finite-size effects inside this phase. The nature of the various phases has been further investigated by calculating dimer-dimer correlation functions. The present results confirm and complement the phase diagram proposed by Moessner and Sondhi on the basis of finite-temperature simulations [Phys. Rev. Lett. 86, 1881 (2001)].