Mechanical Properties of Fractured and Intact Rat Femora Evaluated by Bending, Torsional and Tensile Tests

Abstract
Mechanical properties of healing fractures and growing, intact bones were studied in male rats aged 8 weeks at the beginning of the study period. A standardized, closed fracture was produced in the middle of the left femur. The fracture was not immobilized. At various intervals after the fracture, the healing fractured femora and the contralateral, intact femora were subjected to bending, torsional and tensile tests. The fractured femora regained the strength and the ultimate deformation of the contralateral, intact femora after about 8 weeks when tested in bending, and after about 13 weeks when tested in torsion. In the first phases of fracture repair, the healing fractures could resist more torsional than bending load, whereas the opposite was found for solidly consolidated fractures and intact bones. For intact bones, the ultimate bending and torsional moments increased with increase in age and weight of the animals, whereas the ultimate angular deformation remained constant. The ultimate bending and torsional stresses (bone material strength) increased to reach a plateau when the rats were about 14 weeks old. No significant differences were observed between the bending, torsional and tensile test methods. For the evaluation of fracture repair, each test has its particular application.