The endothelial glycocalyx affords compatibility of Starling's principle and high cardiac interstitial albumin levels

Abstract
Objective: To test the role of an oncotic pressure gradient across the endothelial glycocalyx with respect to extravasation of fluid and colloids and development of tissue edema in a whole organ setting. Methods: We measured filtration in the intact coronary system of isolated guinea pig hearts, comparing colloid-free perfusion and perfusion with 1.67% albumin or 2% hydroxyethylstarch (oncotic pressures 5.30 vs. 11.10 mm Hg, respectively). Heparinase was used to alter the endothelial glycocalyx. Results: Extremely high net organ hydraulic conductivity was obtained with colloid-free perfusion (9.14 μl/min/g tissue). Supplementing perfusate with albumin caused a significant decrease, also vs. hydroxyethylstarch (1.04 vs. 2.67 μl/min/g, ppConclusion: We propose a low-filtration model for the coronary system with different barrier properties in arteriolar/capillary and venular sections. Arteriolar/capillary: very little fluid and colloid extravasation due to the endothelial surface layer formed by the glycocalyx and albumin plus the endothelial strand barrier; venular: little net extravsation of fluid and colloids despite large pores, because of low hydrostatic and oncotic pressure differences between intra- and extravascular spaces. The latter sites provide physiological access of large solutes (colloids) to the tissue.