Tissue Effect on Genetic Control of Transcript Isoform Variation

Abstract
Current genome-wide association studies (GWAS) are moving towards the use of large cohorts of primary cell lines to study a disease of interest and to assign biological relevance to the genetic signals identified. Here, we use a panel of human osteoblasts (HObs) to carry out a transcriptomic survey, similar to recent studies in lymphoblastoid cell lines (LCLs). The distinct nature of HObs and LCLs is reflected by the preferential grouping of cell type–specific genes within biologically and functionally relevant pathways unique to each tissue type. We performed cis-association analysis with SNP genotypes to identify genetic variations of transcript isoforms, and our analysis indicates that differential expression of transcript isoforms in HObs is also partly controlled by cis-regulatory genetic variants. These isoforms are regulated by genetic variants in both a tissue-specific and tissue-independent fashion, and these associations have been confirmed by RT–PCR validation. Our study suggests that multiple transcript isoforms are often present in both tissues and that genetic control may affect the relative expression of one isoform to another, rather than having an all-or-none effect. Examination of the top SNPs from a GWAS of bone mineral density show overlap with probeset associations observed in this study. The top hit corresponding to the FAM118A gene was tested for association studies in two additional clinical studies, revealing a novel transcript isoform variant. Our approach to examining transcriptome variation in multiple tissue types is useful for detecting the proportion of genetic variation common to different cell types and for the identification of cell-specific isoform variants that may be functionally relevant, an important follow-up step for GWAS. The transcriptome of any given cell type is a complex program of controlled gene expression underlying its biological function. An additional layer of molecular complexity involving individual genetic variation can modulate the transcriptome within the same tissue type, conferring potential phenotypic differences between individuals at the cellular level. This study highlights common and unique aspects of the transcriptome between the well-characterized lymphoblastoid cell lines from the International HapMap Project and those of a cultured primary cell type, human osteoblasts. We observe that inter-individual genetic variation can regulate transcript isoform expression in tissue-specific and tissue-independent manners, indicating that genetic differences among individuals can alter the transcriptome in one or more tissues, ultimately leading to altered biological functions within the lymphoblasts and/or osteoblasts. Pursuant to this, genome wide association studies on bone mineral density (BMD) have identified a number of significant loci and polymorphisms highly linked to the BMD quantitative phenotype. A small proportion of these polymorphisms overlap with our highly significant SNPs regulating the osteoblast transcriptome, revealing a potential molecular basis for this phenotype at the transcriptional level. This study highlights the importance of examining the differing transcriptomes and cis-regulatory mechanisms governing the biological and functional roles of varied tissue types.