Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia

Abstract
We conducted a systemic evaluation to describe the effect of minimal residual disease (MRD) kinetics on long-term allogeneic transplantation outcome by analyzing 95 adult transplants with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-positive ALL) who received first-line two courses of imatinib-based chemotherapy (median follow-up 5 years). MRD monitoring was centrally evaluated by real-time quantitative PCR (4.5 log sensitivity). After the first course of imatinib-based chemotherapy, 33 patients (34.7%) achieved at least major molecular response. On the basis of MRD kinetics by the end of two courses of imatinib-based chemotherapy, we stratified entire patients into four subgroups: early-stable molecular responders (EMRs, n=33), late molecular responders (LMRs, n=35), intermediate molecular responders (IMRs, n=9) and poor molecular responders (PMRs, n=18). Multivariate analysis showed that the most powerful factor affecting long-term transplantation outcome was MRD kinetics. Compared with EMRs, IMRs or PMRs had significantly higher risk of treatment failure in terms of relapse and disease-free survival (DFS). LMRs had a tendency toward a lower DFS. Quantitative monitoring of MRD kinetics during the first-line imatinib-based chemotherapy course is useful in identifying subgroups of Ph-positive ALL transplants at a high risk of relapse.

This publication has 32 references indexed in Scilit: