The Macaque Gut Microbiome in Health, Lentiviral Infection, and Chronic Enterocolitis

Top Cited Papers
Open Access
Abstract
The vertebrate gut harbors a vast community of bacterial mutualists, the composition of which is modulated by the host immune system. Many gastrointestinal (GI) diseases are expected to be associated with disruptions of host-bacterial interactions, but relatively few comprehensive studies have been reported. We have used the rhesus macaque model to investigate forces shaping GI bacterial communities. We used DNA bar coding and pyrosequencing to characterize 141,000 sequences of 16S rRNA genes obtained from 100 uncultured GI bacterial samples, allowing quantitative analysis of community composition in health and disease. Microbial communities of macaques were distinct from those of mice and humans in both abundance and types of taxa present. The macaque communities differed among samples from intestinal mucosa, colonic contents, and stool, paralleling studies of humans. Communities also differed among animals, over time within individual animals, and between males and females. To investigate changes associated with disease, samples of colonic contents taken at necropsy were compared between healthy animals and animals with colitis and undergoing antibiotic therapy. Communities from diseased and healthy animals also differed significantly in composition. This work provides comprehensive data and improved methods for studying the role of commensal microbiota in macaque models of GI diseases and provides a model for the large-scale screening of the human gut microbiome. Bacterial mutualists within the gastrointestinal tract aid digestion, promote development of the gut immune system, and provide competitive barriers to pathogen invasion. The host, in return, provides bacteria with safe housing and food during lean times. The composition of the gut microbiota is controlled in part by the host immune system. In a variety of disease states, immune function can be altered, and gut morbidity is often associated, leading to the hypothesis that alterations in the GI microbiota may contribute to disease. In this study, the gut microbiota was characterized in 100 samples from rhesus macaques using pyrosequencing, which allowed 141,000 sequences from 16S rRNA genes to be generated and analyzed. Healthy animals were compared to animals with gut disorders, induced, for example by advanced simian AIDS. Many factors contributed to changes in the microbiota, including the sex of the animal of origin. Animals with chronic colitis showed differences in composition of the GI microbiota compared to healthy animals, providing an association between altered microbiota and disease.