Recovery improvement of graphene-based gas sensors functionalized with nanoscale heterojunctions

Abstract
We report a development of reduced graphene oxide (rGO)-based gas sensors with a practical recovery by facile functionalization with tin dioxide nanoclusters. Upon the introduction of UV illumination to this nanostructure, the reaction on surfaces of tin dioxide nanoclusters was activated and thereby the nanoscale heterojunction barriers between the rGO sheet and the nanoclusters were developed. This lowered the conductance to quickly recover, which was intensified as the cluster density has reached to the percolation threshold. However, after the formation of the cluster percolating network, the sensor response has totally changed into a deterioration of the sensitivity as well as the recovery.