Subwavelength grating crossings for silicon wire waveguides

Abstract
We report on the design, simulation and experimental demonstration of a new type of waveguide crossing based on subwavelength gratings in silicon waveguides. We used 3D finite-difference time-domain simulations to minimize loss, crosstalk and polarization dependence. Measurement of fabricated devices show that our waveguide crossings have a loss as low as −0.023 dB/crossing, polarization dependent loss of < 0.02 dB and crosstalk <-40 dB.