Experimental evaluation of streamline patterns and separated flows in a series of branching vessels with implications for atherosclerosis and thrombosis.

Abstract
Flow conditions in four models representing the aortic bifurcation, iliac bifuraction, and a renal artery branch were investigated at volumetric flow rates corresponding to Reynolds numbers from 1000 to 4000 over the complete range of flow division between daughter vessels. Qualitative flow streamline patterns and quantitative definition of those flow conditions leading to disturbed flow (flow separation ) were determined primarily at steady flow with a limited set of pulsatie experiments. Under conditions of no flow separation, common characteristic streamline patterns not parallel to the center lines of parent or daughter tubes were found for all models. These effects were accentuated with increasing Reynolds number. Flow separation was inducible through alteration of flow division between daughter vessels or by an increase in flow rate. Each of the four models had distinct combinations of flow division ratio and flow rate which gave: (1) no flow separation, (2) flow separation at the outside of the right daughter tube, and (3) flow separation at the outside of the left daughter tube. Models representing the renal artery also had regions of simultaneous left- and righthand separation on the outside of their daughter tubes. The separated flows observed here displayed streamlines forming an open vortex with flows entering and leaving. These regions, which occur only at distinct combinations of flow rate and flow division, may be key centers where platelet aggregates may form, release constituents, and cause vessel injury.