The Two Monofunctional Domains of Octameric Formiminotransferase-Cyclodeaminase Exist as Dimers

Abstract
Formiminotransferase-cyclodeaminase is a bifunctional enzyme arranged as a circular tetramer of dimers that exhibits the ability to efficiently channel polyglutamylated folate between catalytic sites. Through deletion mutagenesis we demonstrate that each subunit consists of an N-terminal transferase active domain and a C-terminal deaminase active domain separated by a linker sequence of minimally eight residues. The full-length enzyme and both isolated domains have been expressed as C-terminally histidine-tagged proteins. Both domains self-dimerize, providing direct evidence for the existence of two types of subunit interfaces. The results suggest that both the transferase and the deaminase activities are dependent on the formation of specific subunit interfaces. Because channeling is not observed between isolated domains, only the octamer appears able to directly transfer pentaglutamylated intermediate between active sites.