Calculation of gravitational waveforms from black hole collisions and disk collapse: Applying perturbation theory to numerical spacetimes

Abstract
Many simulations of gravitational collapse to black holes become inaccurate before the total emitted gravitational radiation can be determined. The main difficulty is that a significant component of the radiation is still in the near-zone, strong field region at the time the simulation breaks down. We show how to calculate the emitted waveform by matching the numerical simulation to a perturbation solution when the final state of the system approaches a Schwarzschild black hole. We apply the technique to two scenarios: the head-on collision of two black holes and the collapse of a disk to a black hole. This is the first reasonably accurate calculation of the radiation generated from colliding black holes that form from matter collapse.