Fast dynamic imaging technique to identify obstructive lesions in the CSF space: report of 2 cases

Abstract
Disorders of CSF dynamics such as syringomyelia and obstructive hydrocephalus can be caused by thin mobile obstructive lesions not visible on traditional MRI sequences. New imaging techniques with balanced steady-state free precession (bSSFP) and dynamic imaging with bSSFP cine allow visualization of these pulsatile structures within the CSF space. The authors present 2 cases involving pediatric patients-one who developed presumed idiopathic syringomyelia and one with presumed communicating hydrocephalus in association with Pfeiffer syndrome-who harbored thin dynamic obstructive lesions seen on bSSFP cine studies using 1.5-T MRI. In combination with traditional CSF cine studies and bSSFP, bSSFP cine sequence was able to detect dynamic membranous adhesions not seen on traditional MRI sequences. These previously undetectable lesions on traditional MRI sequences were the etiology of CSF obstruction, and tailored surgical approaches were performed to avoid shunting in both patients. These reports demonstrate the clinical utility for using these novel imaging tools for the detection of thin adhesions and dynamic lesions in the central nervous system. Balanced SSFP cine sequences can supplement conventional MR modalities to identify these otherwise poorly visualized lesions responsible for presumed communicating hydrocephalus or idiopathic syringomyelia.