A FRET-Based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide

Abstract
We report the synthesis, properties, and biological applications of Ratio-Peroxyfluor-1 (RPF1), a new ratiometric fluorescent reporter for hydrogen peroxide. RPF1 is comprised of a two-fluorophore cassette, where the spectral overlap between coumarin donor and fluoran/fluorescein acceptor partners can be controlled by the chemoselective peroxide-mediated deprotection of boronic ester pendants on the acceptor dye. RPF1 features good selectivity for hydrogen peroxide over a variety of reactive oxygen species, including superoxide and nitric oxide, a ca. 8-fold increase in fluorescence intensity ratio (lambda517/lambda464) upon H2O2 reaction, and excitation and emission profiles in the visible region. Experiments with viable yeast mitochondria show that RPF1 can monitor and quantify endogenous production of H2O2, establishing the potential utility of this approach for probing peroxide biology in living systems.