Efficient cap-dependent translation of mammalian mRNAs with long and highly structured 5′-untranslated regions in vitro and in vivo

Abstract
According to the generally accepted scanning model proposed by M. Kozak, the secondary structure of the 5′-untranslated region (5′-UTR) of eukaryotic mRNA can only inhibit the translation initiation by counteracting migration of the 40S ribosomal subunit along the mRNA polynucleotide chain. The existence of efficiently translatable mRNAs with long and highly structured 5′-UTRs is incompatible with the cap-dependent scanning mechanism. Such mRNAs are expected to use alternative ways of translation initiation to be efficiently translated, primarily the mechanism of internal ribosome entry mediated by internal ribosome entry sites (IRESs), special RNA structures that reside in the 5′-UTR. The paper shows that this viewpoint is incorrect and is probably based on experiments with mRNA translation in rabbit reticulocyte lysate. This cell-free system fails to adequately reflect the relative translation efficiencies observed for different mRNAs in vivo. Five structurally similar mRNAs with either short leaders of the β-globin and β-actin mRNAs or long and highly structured 5′-UTRs of the c-myc, LINE-1, and Apaf-1 mRNAs displayed comparable translation activities in transfected cells and an entire cytoplasmic extract of cultivated cells. Translation activity proved to strongly depend on the presence of a cap at the 5′ end.