Abstract
Macrophage apoptosis occurs throughout all stages of atherosclerosis, yet new findings in vivo suggest that the consequences of this event may be very different in early versus late atherosclerotic lesions. In early lesions, where phagocytic clearance of apoptotic cells appears to be efficient, macrophage apoptosis is associated with diminished lesion cellularity and decreased lesion progression. In late lesions, however, a number of factors may contribute to defective phagocytic clearance of apoptotic macrophages, leading to secondary necrosis of these cells and a proinflammatory response. The cumulative effect of these late lesional events is generation of the necrotic core, which, in concert with proatherogenic effects of residual surviving macrophages, promotes further inflammation, plaque instability, and thrombosis. Thus, the ability or lack thereof of lesional phagocytes to safely clear apoptotic macrophages may be an important determinant of acute atherothrombotic clinical events. Further understanding of the mechanisms involved in macrophage apoptosis and phagocytic clearance might lead to novel therapeutic strategies directed against the progression of advanced plaques.