Abstract
In emerging cognitive radio (CR) networks with spectrum sharing, the first cognitive task preceding any dynamic spectrum access is the sensing and identification of spectral holes in wireless environments. This paper develops a distributed compressed spectrum sensing approach for (ultra-)wideband CR networks. Compressed sensing is performed at local CRs to scan the very wide spectrum at practical signal-acquisition complexity. Meanwhile, spectral estimates from multiple local CR detectors are fused to collect spatial diversity gain, which improves the sensing quality especially under fading channels. New distributed consensus algorithms are developed for collaborative sensing and fusion. Using only one-hop local communications, these distributed algorithms converge fast to the globally optimal solutions even for multi-hop CR networks, at low communication and computation load scalable to the network size.

This publication has 8 references indexed in Scilit: