Solid-state thin-film memistor for electronic neural networks

Abstract
We report on a tungsten-oxide-based, nonvolatile, electrically reprogrammable, variable resistance device as an analog synaptic memory connection for electronic neural networks. A voltage controlled, reversible injection of H+ ions in electrochromic thin films of WO3 is utilized to modulate its resistance. A hygroscopic thin film of Cr2 O3 is the source of H+ ions. The resistance of the device can be tailored and stabilized over a wide dynamic range (∼four orders of magnitude), and the programming speed is modulated by the control voltage. The suitability of such a device in terms of its response speed, reversibility, stability, and cyclability for its use in electronic neural networks is discussed.