Abstract
In this paper we present new randomized and deterministic algorithms for the classical problem of broadcasting in radio networks with unknown topology. We consider directed n-node radio networks with specified eccentricity D (maximum distance from the source node to any other node). Our first main result closes the gap between the lower and upper bound: we describe an optimal randomized broadcasting algorithm whose running time complexity is O(D log(n/D) + log/sup 2/n), with high probability. In particular, we obtain a randomized algorithm that completes broadcasting in any n-node radio network in time O(n), with high probability. The main source of our improvement is a better "selecting sequence" used by the algorithm that brings some stronger property and improves the broadcasting time. Next, we demonstrate how to apply our approach to deterministic broadcasting, and describe a deterministic oblivious algorithm that completes broadcasting in almost optimal time O(n log/sup 2/D). Finally, we show how our randomized broadcasting algorithm can be used to improve the randomized complexity of the gossiping problem.

This publication has 15 references indexed in Scilit: