Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair

Abstract
Although the acetylation of histones has a well-documented regulatory role in transcription(1-4), its role in other chromosomal functions remains largely unexplored. Here we show that distinct patterns of histone H4 acetylation are essential in two separate pathways of double-strand break repair. A budding yeast strain with mutations in wild-type H4 acetylation sites shows defects in nonhomologous end joining repair and in a newly described pathway of replication-coupled repair. Both pathways require the ESA1 histone acetyl transferase (HAT), which is responsible for acetylating all H4 tail lysines, including ectopic lysines that restore repair capacity to a mutant H4 tail. Arp4, a protein that binds histone H4 tails and is part of the Esa1-containing NuA4 HAT complex, is recruited specifically to DNA double-strand breaks that are generated in vivo. The purified Esa1-Arp4 HAT complex acetylates linear nucleosomal arrays with far greater efficiency than circular arrays in vitro, indicating that it preferentially acetylates nucleosomes near a break site. Together, our data show that histone tail acetylation is required directly for DNA repair and suggest that a related human HAT complex may function similarly.