Compaction Properties of Spheronized Binary Granular Mixtures

Abstract
Two spheronized granular formulations containing 20% anhydrous lactose/80% microcrystalline cellulose (MCC) and 80% anhydrous lactose/20% microcrystalline cellulose were blended in various proportions and compressed. Physical-mechanical properties of the resulting compacts were investigated using tableting indices and compared with powder mixtures of the same compositions. The compacts were compressed at a solid fraction of 0.80 for both powder and bead mixtures. An additional set of bead compacts were made at a solid fraction of 0.87. The thickness of the compacts was measured in the post-ejection stage to investigate their expansion behavior. The tensile strength with and without a stress concentrator and the dynamic indentation hardness of the compacts were determined. The brittle fracture index (BFI) and bonding index (BI) values were also calculated. The microstructure of the beads and compacts were investigated using scanning electron microscopy to observe the bonding phenomena. The results showed that the compacts made from beads underwent different compaction/consolidation behaviors than the powders of the same lactose/MCC compositions. For powdered compacts, the tensile strength with or without a stress concentrator increased with increasing MCC content while the compacts made from beads showed the opposite trend. However, this trend was not seen in the indentation hardness test. The resulting BFI values were all low due to the plastic nature of the materials selected. The BI values of the bead and powder compacts also exhibited opposite tendencies and reflected the divergent mechanical properties of the materials presented in granulated and powdered forms. Microstructure studies revealed the bonding states between the beads in the compacts. Discrepancies in mechanical properties were related to the compressibility, compactibility, and porosities of the excipients studied.

This publication has 54 references indexed in Scilit: