Reducing Excess Cardiac Biomarker Testing at an Academic Medical Center

Abstract
Elimination of wasteful diagnostic testing will improve value for the United States health care system. Design and implement a multimodal intervention to improve evidence-based ordering of cardiac biomarkers for the diagnosis of acute coronary syndrome (ACS). Interrupted times series. A total of 60,494 adult inpatient admissions from January 2009 through July 2011 (pre-intervention) and 24,341 admissions from November 2011 through October 2012 (post-intervention) at an academic medical center in Baltimore, Maryland. Multimodal intervention introduced August through October 2011 that included dissemination of an institutional guideline and changes to the computerized provider order entry system. The primary outcome was percentage of patients with guideline-concordant ordering of cardiac biomarkers, defined as three or fewer troponin tests and zero CK-MB tests in patients without a diagnosis of ACS. Secondary outcomes included counts of tests ordered per patient, incidence of diagnosis of ACS, and estimated change in charges for cardiac biomarker tests in the post-intervention period. Twelve months following the intervention, we estimated that guideline-concordant ordering of cardiac biomarkers increased from 57.1 % to 95.5 %, an absolute increase of 38.4 % (95 % CI, 36.4 % to 40.4 %). We estimated that the intervention led to a 66 % reduction in the number of tests ordered, and a $1.25 million decrease in charges over the first year. At 12 months, there was an estimated absolute increase in incidence of primary diagnosis of ACS of 0.3 % (95 % CI, 0.0 % to 0.5 %) compared with the expected baseline rate. We implemented a multimodal intervention that significantly increased guideline-concordant ordering of cardiac biomarker testing, leading to substantial reductions in tests ordered without impacting diagnostic yield. A trial of this approach at other institutions and for other diagnostic tests is warranted and if successful, would represent a framework for eliminating wasteful diagnostic testing. The online version of this article (doi:10.1007/s11606-014-2919-5) contains supplementary material, which is available to authorized users.