Translational competence of ribosomes released from a premature termination codon is modulated by NMD factors

Abstract
In addition to their well-documented roles in the promotion of nonsense-mediated mRNA decay (NMD), yeast Upf proteins (Upf1, Upf2/Nmd2, and Upf3) also manifest translational regulatory functions, at least in vitro, including roles in premature translation termination and subsequent reinitiation. Here, we find that all upfΔ strains also fail to reinitiate translation after encountering a premature termination codon (PTC) in vivo, a result that led us to seek a unifying mechanism for all of these translation phenomena. Comparisons of the in vitro translational activities of wild-type (WT) and upf1Δ extracts were utilized to test for a Upf1 role in post-termination ribosome reutilization. Relative to WT extracts, non-nucleased extracts lacking Upf1 had approximately twofold decreased activity for the translation of synthetic CAN1/LUC mRNA, a defect paralleled by fewer ribosomes per mRNA and reduced efficiency of the 60S joining step at initiation. These deficiencies could be complemented by purified FLAG-Upf1, or 60S subunits, and appeared to reflect diminished cycling of ribosomes from endogenous PTC-containing mRNAs to exogenously added synthetic mRNA in the same extracts. This hypothesis was tested, and supported, by experiments in which nucleased WT or upf1Δ extracts were first challenged with high concentrations of synthetic mRNAs that were templates for either normal or premature translation termination and then assayed for their capacity to translate a normal mRNA. Our results indicate that Upf1 plays a key role in a mechanism coupling termination and ribosome release at a PTC to subsequent ribosome reutilization for another round of translation initiation.