Boron Containing Pyrimidines, Nucleosides, and Oligonucleotides for Neutron Capture Therapy

Abstract
The synthesis and encouraging biological findings with boron-containing nucleosides, such as 5-dihydroxyboryl-2′-deoxyuridine, which could be used for boron neutron capture therapy (BNCT) for the treatment of various malignancies, has provided momentum to synthesize several boron containing nucleosides and oligomers. BNCT is based on the property of the non-radioactive boron-10 isotope to capture low energy neutrons, thereby producing a localized cell-destroying nuclear reaction. Thus, irradiation of tumor cells with neutrons, following incorporation of the boronated nucleoside, would result in the destruction of tumor tissue only. Intracellular phosphorylation by nucleoside kinases, and/or incorporation into the cancer cell DNA as a false nucleotide precursor, followed by irradiation by neutrons, would lead primarily to tumor cell death. The synthetic and biological approaches for boronated pyrimidines, nucleosides, and oligonucleotides for BNCT are reviewed.