Particle- and photoinduced conductivity in type-IIa diamonds

Abstract
Electrical characteristics associated with radiation detection were measured on single‐crystal natural type‐IIa diamond using two techniques: charged particle‐induced conductivity and time‐resolved transient photoinduced conductivity. The two techniques complement each other: The charged particle‐induced conductivity technique measures the product of the carrier mobility μ and lifetime τ throughout the bulk of the material while the transient photoconductivity technique measures the carrier mobility and lifetime independently at the first few micrometers of the material surface. For each technique, the μτ product was determined by integration of the respective signals. The collection distance that a free carrier drifts in an electric field was extracted by each technique. As a result, a direct comparison of bulk and surface electrical properties was performed. The data from these two techniques are in agreement, indicating no difference in the electrical properties between the bulk and the surface of the material. The collection distance continues to increase with field up to 25 kV/cm without saturation. Using the transient photoconductivity technique the carrier mobility was measured separately and compared with a simple electron‐phonon scattering model. The general characteristics of carrier mobility, lifetime, and collection distance at low electric field appear to be adequately described by the model.

This publication has 23 references indexed in Scilit: