Osteogenin, a Bone Morphogenetic Protein, Adsorbed on Porous Hydroxyapatite Substrata, Induces Rapid Bone Differentiation in Calvarial Defects of Adult Primates

Abstract
Osteogenin, a bone morphogenetic protein, in conjunction with insoluble collagenous bone matrix initiates local endochondral bone differentiation by induction in vivo. This study, by exploiting the affinity of native osteogenin for hydroxyapatite, was designed to construct a delivery system for the expression of the biologic activity of osteogenin in nonhealing calvarial defects of adult primates. After exposure of the calvaria, 64 cranial defects, 25 mm in diameter, were prepared in 16 adult male baboons (Papio ursinus). Defects were implanted with disks of porous nonresorbable and resorbable hydroxyapatite substrata obtained after hydrothermal conversion of calcium carbonate exoskeletons of corals. In each animal, one disk of each hydroxyapatite preparation was treated with osteogenin isolated and purified from baboon bone matrix after sequential chromatography on heparin-Sepharose, hydroxyapatite, and Sephacryl S-200 gel filtration columns. The remaining two defects were implanted with one disk of each hydroxyapatite preparation without osteogenin as control. Histomorphometry on decalcified sections prepared on days 30 and 90 showed superior osteogenesis in osteogenin-treated nonresorbable hydroxyapatite specimens as compared with controls. On day 90, substantial bone formation also had occurred in control nonresorbable hydroxyapatite specimens. On day 90, but not on day 30, significantly greater amounts of bone had formed in osteogenin-treated resorbable specimens as compared with resorbable controls. Overall, resorbable substrata performed poorly when compared with nonresorbable substrata, perhaps due to a premature dissolution of the implants. These results provide evidence that the biologic activity of osteogenin can be restored and delivered by a substratum other than the organic collagenous matrix, inducing rapid bone differentiation in calvarial defects of adult nonhuman primates. The adsorption strategy of osteogenin on porous inorganic nonimmunogenic substrata may help to design appropriate osteogenic delivery systems for craniofacial and orthopedic applications in humans.