Supervisory Control for State-Vector Transition Models—A Unified Approach

Abstract
A generic state-vector transition (SVT) model is suggested, including a flexible synchronous composition involving both shared variables and events. This model is analyzed, focusing on properties that are important for supervisor synthesis. A synthesis procedure is then developed for the SVT model, where supervisor guards are generated that guarantee a controllable, nonblocking and maximally permissive supervisor. Novel conditions are introduced, such that more flexible specifications can be applied than earlier suggested for related models. Since the SVT model includes automata and (colored) Petri nets, optionally extended with variables, guards and actions, as special cases, the suggested synthesis approach unifies supervisor synthesis for the main discrete event model classes. Finally, the SVT model is naturally represented and efficiently computed based on binary decision diagrams, and the resulting supervisor guards are easily implemented in industrial control systems.

This publication has 38 references indexed in Scilit: