Stereo vision-based obstacle avoidance for micro air vehicles using disparity space

Abstract
We address obstacle avoidance for outdoor flight of micro air vehicles. The highly textured nature of outdoor scenes enables camera-based perception, which will scale to very small size, weight, and power with very wide, two-axis field of regard. In this paper, we use forward-looking stereo cameras for obstacle detection and a downward-looking camera as an input to state estimation. For obstacle representation, we use image space with the stereo disparity map itself. We show that a C-space-like obstacle expansion can be done with this representation and that collision checking can be done by projecting candidate 3-D trajectories into image space and performing a z-buffer-like operation with the disparity map. This approach is very efficient in memory and computing time. We do motion planning and trajectory generation with an adaptation of a closed-loop RRT planner to quadrotor dynamics and full 3D search. We validate the performance of the system with Monte Carlo simulations in virtual worlds and flight tests of a real quadrotor through a grove of trees. The approach is designed to support scalability to high speed flight and has numerous possible generalizations to use other polar or hybrid polar/Cartesian representations and to fuse data from additional sensors, such as peripheral optical flow or radar.

This publication has 20 references indexed in Scilit: