Elastic and high pressure properties of ZnO

Abstract
We have studied the elastic and structural properties of ZnO by means of accurate first-principles total energy calculations using the full potential linear muffin tin orbital method. The calculations are based on the density functional theory and we have used the local density Hedin–Lundqvist parametrization and the generalized gradient approximation of Perdew and Wang for the exchange and correlation potential. The calculated values for the equilibrium volume, bulk modulus, and elastic constants are generally in very good agreement with experiments. At elevated pressures ZnO undergoes a structural phase transition from the relatively open wurtzite structure into the more dense NaCl atomic arrangement. The calculated transition pressure is in good agreement with experiment.