Effects of pilot hole preparation technique on pedicle screw fixation in different regions of the osteoporotic thoracic and lumbar spine

Abstract
The authors evaluated the effects of pilot hole preparation technique on insertional torque and axial pullout resistance in osteoporotic thoracic and lumbar vertebrae.Using a probe technique and fluoroscopy, 102 pedicle screws were placed in 51 dual-energy x-ray absorptiometry-proven osteoporotic thoracic and lumbar levels. Screws were inserted using the same-size tapping, one-size-under tapping, or no-tapping technique. Insertional torque and axial pullout resistance were measured. Analysis of variance, Fisher exact test, and regression analysis were performed. Same-size tapping decreased pullout resistance in the lumbar spine. There was no effect on pullout resistance in the thoracic spine. Pullout resistance values were lower for all insertion techniques in the upper thoracic spine. Insertional torque and bone mineral density correlated with pullout resistance in the thoracic and lumbar spine.Tapping decreased pedicle screw pullout resistance in the osteoporotic human lumbar spine, although it did not affect pullout strength in the thoracic spine. Tapping decreased insertional torque in upper thoracic levels. Surgeons should optimize overall construct rigidity when placing thoracic pedicle screws in patients with spinal segment osteoporosis.