Electron beam‐melted, free‐form‐fabricated titanium alloy implants: Material surface characterization and early bone response in rabbits

Abstract
Titanium-6aluminum-4vanadium implants (Ti6Al4V) were prepared by free-form-fabrication (FFF) and were used either as produced or after machining and compared with wrought machined Ti6Al4V. Auger electron spectroscopy (AES), depth profiles, and interferometry were used to analyze the surface properties. The tissue response after 6-weeks in rabbit femur and tibia was evaluated using light microscopy and histomorphometry. The results revealed that the bulk chemical and mechanical properties of the reference material and the electron beam-melted (EBM) material were within the ASTM F136 specifications. The as-produced EBM Ti6Al4V implants had increased surface roughness, thicker surface oxide and, with the exception of a higher content of Fe, a similar surface chemical composition compared with machined EBM Ti6Al4V and machined, wrought Ti6Al4V implants. The two latter implants did not differ with respect to surface properties. The general tissue response was similar for all three implant types. Histomorphometry revealed a high degree of bone-to-implant contact (no statistically significant differences) for all the three implant types. The present results show that the surface properties of EBM Ti6Al4V display biological short-term behavior in bone equal to that of conventional wrought titanium alloy. The opportunity to engineer geometric properties provides new and additional benefits which justify further studies. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009