Abstract
Antibody arrays represent one of the high-throughput techniques that are able to detect multiple proteins simultaneously. One of the main advantages of this technology over other proteomic approaches is that the identities of the measured proteins are known or can be readily characterized, allowing a biological interpretation of the results. Features such as lower sample volume and antibody concentration requirements, higher format versatility, and reproducibility support the increasing use of antibody arrays in cancer research. Clinical applications include disease marker discovery for diagnosis, prognosis, and drug response, characterization of signaling and protein pathways, and modifications associated with disease development and progression. This report presents an overview of technical issues of the main antibody array formats and various applications in cancer research. Antibody arrays are high-throughput tools that improve the functional characterization of molecular bases for disease. Furthermore, identification and validation of protein expression patterns, characteristic of cancer progression, and tumor subtypes may intervene and improve tailored therapies in the clinical management of cancer patients.