Mechanical and photosynthetic constraints on the evolution of plant shape

Abstract
A computer model is presented which is capable of calculating both the photosynthetic efficiency (I) of any specified plant shape and the stress related to the total moment arm (M) imposed on vertical branching patterns. Computer simulations indicate that a flattened plant thallus and an erect branching growth habit are two plant shapes capable of optimizing photosynthetic efficiency during indeterminate growth. These two morphologies have geometric analogues in the dorsiventral thalli of some bryophytes and in the vertical axes of mosses and tracheophytes, respectively.Extension of the model to complex, three-dimensional branching patterns indicates that I and I/M are maximized when branching is overtopped (treelike, with lateral branches on a main axis) and when lateral branching systems are planated (frondlike). Geometric alterations of branching patterns that result in optimization of I and I/M can be simulated by computer and are shown to be similar to morphologic alterations attending the early evolution of vascular land plants. It is suggested that a number of major evolutionary trends seen in Upper Silurian to Upper Devonian times can be expressed in terms of optimizing the display of photosynthetic tissues (I) or the balance between photosynthetic efficiency and incurred moment arms (I/M).