Interactions of the TGB1 Protein during Cell-to-Cell Movement of Barley Stripe Mosaic Virus

Abstract
We have recently used a green fluorescent protein (GFP) fusion to the γb protein of Barley stripe mosaic virus (BSMV) to monitor cell-to-cell and systemic virus movement. The γb protein is involved in expression of the triple gene block (TGB) proteins encoded by RNAβ but is not essential for cell-to-cell movement. The GFP fusion appears not to compromise replication or movement substantially, and mutagenesis experiments demonstrated that the three most abundant TGB-encoded proteins, βb (TGB1), βc (TGB3), and βd (TGB2), are each required for cell-to-cell movement (D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65–75, 2001). We have now extended these analyses by engineering a fusion of GFP to TGB1 to examine the expression and interactions of this protein during infection. BSMV derivatives containing the TGB1 fusion were able to move from cell to cell and establish local lesions in Chenopodium amaranticolor and systemic infections of Nicotiana benthamiana and barley. In these hosts, the GFP-TGB1 fusion protein exhibited a temporal pattern of expression along the advancing edge of the infection front. Microscopic examination of the subcellular localization of the GFP-TGB1 protein indicated an association with the endoplasmic reticulum and with plasmodesmata. The subcellular localization of the TGB1 protein was altered in infections in which site-specific mutations were introduced into the six conserved regions of the helicase domain and in mutants unable to express the TGB2 and/or TGB3 proteins. These results are compatible with a model suggesting that movement requires associations of the TGB1 protein with cytoplasmic membranes that are facilitated by the TGB2 and TGB3 proteins.