Impaired Mechanical Strength of Bone in Experimental Copper Deficiency

Abstract
Copper, through its role as cofactor for lysyl oxidase, is essential for intra- and inter-molecular cross-links in collagen. Copper deficiency, in man and in animals, is associated with bone fragility ascribed to defective cross-links. To assess bone strength in copper-deficient animals, we designed a sensitive torsion-testing apparatus according to biomechanical considerations. Femora from 7 copper-deficient rats and from their pair-fed controls were tested in torsional loading until fracture. Significant decreases in the maximal sustained torque (t = 2.93, p