Amiodarone Inhibits Trypanosoma cruzi Infection and Promotes Cardiac Cell Recovery with Gap Junction and Cytoskeleton Reassembly In Vitro

Abstract
We present the results of the first detailed study of the antiproliferative and ultrastructural effects of amiodarone on Trypanosoma cruzi, the causative agent of Chagas' disease. Moreover, we report the effects of this compound on the recovery of F-actin fibrils, connexin43, and contractility in T. cruzi-infected cardiac myocytes. Amiodarone is the most prescribed class III antiarrhythmic agent and is frequently used for the symptomatic treatment of Chagas' disease patients with cardiac compromise. In addition, recent studies identified its antifungal and antiprotozoal activities, which take place through Ca2+ homeostasis disruption and ergosterol biosynthesis blockade. We tested different concentrations of amiodarone (2.5 to 10 μM) on infected primary cultures of heart muscle cells and observed a dose- and time-dependent effect on growth of the clinically relevant intracellular amastigote form of T. cruzi. Ultrastructural analyses revealed that amiodarone had a profound effect on intracellular amastigotes, including mitochondrial swelling and disorganization of reservosomes and the kinetoplast and a blockade of amastigote-trypomastigote differentiation. Amiodarone showed no toxic effects on host cells, which recovered their F-actin fibrillar organization, connexin43 distribution, and spontaneous contractility concomitant with the drug-induced eradication of the intracellular parasites. Amiodarone is, therefore, a promising compound for the development of new drugs against T. cruzi.