The Xenometabolome and Novel Contaminant Markers in Fish Exposed to a Wastewater Treatment Works Effluent

Abstract
Organisms exposed to wastewater treatment works (WwTW) effluents accumulate complex mixtures of xenobiotics but there is a scarcity of information on the nature and impacts of these chemical mixtures. We applied metabolomics techniques as a novel approach to identify xenobiotics and their metabolites (the xenometabolome) that bioconcentrate in fish exposed to a WwTW effluent. Exposed juvenile rainbow trout (Oncorhynchus mykiss) accumulated surfactants, naphthols, chlorinated xylenols, and phenoxyphenols, chlorophenes, resin acids, mefenamic acid, oxybenzone, and steroidal alkaloids in the bile or plasma, and there were perturbations in the plasma concentrations of bile acids and lipids. Exposure of adult roach (Rutilus rutilus) to 50% or 100% concentrations of the same effluent resulted in dose-dependent increases in plasma concentrations of xenometabolites as well as cyprinol sulfate and taurocholic acid, lysophospholipids, and a decrease in sphingosine levels (a key component of cell membrane lipids). Our findings reveal the highly complex nature of xenobiotics accumulating in effluent-exposed fish, and the great potential of metabolomics for both identifying plasma marker (bio)chemicals for monitoring exposure to wastewater effluents, and for targeting studies on potential consequent impacts on fish health.

This publication has 36 references indexed in Scilit: