Bone cell function, regulation, and communication: A role for nitric oxide

Abstract
A large array of factors serve as vital communication links between cells and the characterization, regulation, and mechanisms of action of such factors are topics of intense research efforts. Most intercellular messenger molecules which have been described over the years are represented by proteins, small peptides, amino acids or their derivatives, ions, lipid metabolites, or steroids. However, a small uncharged free radical, nitric oxide, has recently garnered much attention as a potent multifunctional signal molecule with widespread actions within and between diverse tissues. Biochemical, molecular, and regulatory studies of the family of enzymes responsible for nitric oxide synthesis, nitric oxide synthases, have established that there are at least three distinct isoforms of this enzyme which are differentially expressed and regulated in various cells or tissues. Modulation of these isoenzyme levels or activities by diverse signals is mediated via transcriptional, translational, and/or post‐translational mechanisms, and consequently, alterations in such control may influence normal or pathological processes. Nitric oxide appears to exert pronounced effects on skeletal physiology and its production by various bone cells, elicited target cell responses, modulation by other signalling molecules (e.g., cytokines, hormones, fatty acid derivatives), and chemical interactions with other free radicals (e.g., superoxide anions, hydroxyl radicals) may form one important facet of the many complicated communication pathways controlling bone cell physiology and remodeling. Further cell and molecular studies are needed to address the precise roles that nitric oxide plays in bone development and in the formation and degradation of bone during ordinary bone metabolism. In addition, alterations in the regulation and action of the bone nitric oxide system as a function of certain bone disorders may be manifested by perturbations in bone integrity or mineral homeostasis. In this article, we review the current evidence implicating nitric oxide as an important messenger molecule in bone intercellular communication, speculate on potential roles for this radical in bone biology, and discuss possible future directions for advanced research into the function of nitric oxide in skeletal physiology.

This publication has 40 references indexed in Scilit: