Uncertainties in the Link Between Global Climate Change and Predicted Health Risks from Pollution: Hexachlorobenzene (HCB) Case Study Using a Fugacity Model

Abstract
Industrial societies have altered the earth's environment in ways that could have important, long-term ecological, economic, and health implications. In this paper, we examine the extent to which uncertainty about global climate change could impact the precision of predictions of secondary outcomes such as health impacts of pollution. Using a model that links global climate change with predictions of chemical exposure and human health risk in the Western region of the United States of America (U.S.), we define parameter variabilities and uncertainties and we characterize the resulting outcome variance. As a case study, we consider the public health consequences from releases of hexachlorobenzene (HCB), a ubiquitous multimedia pollutant. By constructing a matrix that links global environmental change both directly and indirectly to potential human-health effects attributable to HCB released into air, soil, and water, we define critical parameter variances in the health risk estimation process. We employ a combined uncertainty/sensitivity analysis to investigate how HCB releases are affected by increasing atmospheric temperature and the accompanying climate alterations that are anticipated. We examine how such uncertainty impacts both the expected magnitude and calculational precision of potential human exposures and health effects. This assessment reveals that uncertain temperature increases of up to 5°C have little impact on either the magnitude or precision of the public-health consequences estimated under existing climate variations for HCB released into air and water in the Western region of the U.S.

This publication has 22 references indexed in Scilit: