Abstract
A method for producing macroscopic quantum superposition states (generally known as Schrödinger cat) states for optical fields is presented. The proposed method involves two modes of the field interacting dispersively in a Kerr medium where one of the modes is an arm of a Mach-Zehnder interferometer and the other mode is external to it. If the external mode initially contains a macroscopic quantum state, such as a coherent state, and the vacuum and a single photon state are the inputs to the interferometer, the external field state becomes entangled with the number states associated with the two paths of the interferometer. Selective measurement at the output ports of the interferometer project the external mode into the desired cat states. It is pointed out that the method can also be used to generate cat states out of multimode states initially containing correlations.