Identification of Neonatal Hearing Impairment: Ear-Canal Measurements of Acoustic Admittance and Reflectance in Neonates

Abstract
Objectives 1) To describe broad bandwidth measurements of acoustic admittance (Y) and energy reflectance (R) in the ear canals of neonates. 2) To describe a means for evaluating when a YR response is valid. 3) To describe the relations between these YR measurements and age, gender, left/right ear, and selected risk factors. Design YR responses were obtained at four test sites in well babies without risk indicators, well babies with at least one risk indicator, and graduates of neonatal intensive care units. YR responses were measured using a chirp stimulus at moderate levels over a frequency range from 250 to 8000 Hz. The system was calibrated based on measurements in a set of cylindrical tubes. The probe assembly was inserted in the ear canal of the neonate, and customized software was used for data acquisition. Results YR responses were measured in over 4000 ears, and half of the responses were used in e-ploratory data analyses. The particular YR variables chosen for analysis were energy reflectance, equivalent volume and acoustic conductance. Based on the view that unduly large negative equivalent volumes at low frequencies were physically impossible, it was concluded that appro-imately 13% of the YR responses showed evidence of improper probe seal in the ear canal. To test how these outliers influenced the overall pattern of YR responses, analyses were conducted both on the full data set (N = 2081) and the data set excluding outliers (N = 1825). The YR responses averaged over frequency varied with conceptional age (conception to date of test), gender, left/right ear, and selected risk factors; in all cases, significant effects were observed more frequently in the data set excluding outliers. After excluding outliers and controlling for conceptional age effects, the dichotomous risk factors accounting for the greatest variance in the YR responses were, in rank order, cleft lip and palate, aminoglycoside therapy, low birth weight, history of ventilation, and low APGAR scores. In separate analyses, YR responses varied in the first few days after birth. An analysis showed that the use of a YR test criterion to assess the quality of probe seal may help control the false-positive rate in evoked otoacoustic emission testing. Conclusions This is the first report of wideband YR responses in neonates. Data were acquired in a few seconds, but the responses are highly sensitive to whether the probe is fully sealed in the ear canal. A real-time acoustic test of probe fit is proposed to better address the probe seal problem. The YR responses provide information on middle-ear status that varies over the neonatal age range and that is sensitive to the presence or absence of risk factors, ear, and gender differences. Thus, a YR test may have potential for use in neonatal screening tests for hearing loss.