Abstract
SUMMARY: The growth of sugarbeet (Beta vulgaris L.) seedlings was investigated under laboratory conditions in 1990 and 1991. Three phases were identified during heterotrophic growth in the dark, based on the changes in dry weight, carbon and nitrogen contents. The perispermic reserves were first transferred to the young seedling. All the components of the seedling (cotyledons, hypocotyl, radicle) began to elongate and their dry weights increased. The seedling separated from the seed at the end of this first period, 4 days after imbibition had started at 20 °C. During the second period, there was a major redistribution of material between organs, mainly from cotyledons to the hypocotyl. The different organs elongated rapidly. From the start of the third period, 6 days after sowing at 20 °C, the organs began to lose weight and gradually ceased to elongate. The dry weights of the whole seedlings and of each organ were proportional to the initial seed weights. The elongations and changes in dry weights obtained at different temperatures coincided when time was expressed as thermal time using a base temperature of 3·5 °C. The growth of the seedling after illumination depended on the heterotrophic growth duration. If emergence occurred after 100 °Cd, the relative growth rate of the seedling decreased. In field conditions, plant variability at the end of sugarbeet establishment is due not only to variations in seed weights but also to environmental conditions that control emergence delay.

This publication has 16 references indexed in Scilit: