The relative sustainability of alternative, conventional, and reduced-till farming systems

Abstract
We compared the agronomic, economic, and ecological performance of alternative (organic), conventional, and reduced-till farming systems over a 7-year period. We evaluated the sustainability of the various systems regarding several concerns, including soil erosion, pollution potential, whole-farm productivity, energy use, environmental stress, economic performance, and farm size. The alternative systems relied primarily on forage legumes (alfalfa or clover) as substitutes for the pesticides and commercial fertilizers used in the other systems.Two studies were established in northeastern South Dakota in 1985. Study I emphasized row crops, Study II small grains. The alternative system in Study I, which included alfalfa hay in the rotation, was the most productive, both agronomically and economically. In Study II, the alternative system included a green manure crop (clover) in the 4-year rotation and had the lowest agronomic production; however, its economic performance was similar to the conventional system's. Year-to-year variability in production was lowest in the alternative systems. The alternative systems in both studies were the most energy-efficient, and the reduced-till systems the least. Judged by the distribution of nitrate-N in the soil profile, the potential for groundwater pollution was higher in the conventional and reduced-till systems in Study I than in the alternative system.The alternative systems in both studies depended less on government payments for their profitability. Results in Study I also showed that more widespread adoption of alternative systems would tend to halt or slow the trend of ever-increasing farm size. These studies suggest that alternative systems are more sustainable in this agro-climatic area.

This publication has 7 references indexed in Scilit: