Single amino-acid changes in HIV envelope affect viral tropism and receptor binding

Abstract
Infection by the human immunodeficiency virus (HIV) is initiated by the binding of its extracellular envelope glycoprotein, gp120, to the CD4 antigen on target cells. To map the residues of the HIV-1 glycoprotein that are critical for binding and to analyse the effects of binding on viral infectivity, we created 15 mutations in a region of gp120 that is important for binding to CD4 (refs 4,5). We find that substitution of a single amino acid (tryptophan at position 432) can abrogate CD4 binding and that virus carrying this mutation is non-infectious. By contrast, other amino-acid changes in the same region do not affect CD4 binding but restrict viral tropism: virions containing isoleucine substitutions at position 425 lose their ability to infect a monocyte cell line (U937 cells) but can still infect T-lymphocyte cell lines (CEM, SUP-T1) and activated human peripheral blood lymphocytes. These results indicate that cellular tropism of HIV can be influenced by a single amino-acid change in gp120.