Wash-free, Electrochemical Platform for the Quantitative, Multiplexed Detection of Specific Antibodies

Abstract
The diagnosis, prevention, and treatment of many illnesses, including infectious and autoimmune diseases, would benefit from the ability to measure specific antibodies directly at the point of care. Thus motivated, we designed a wash-free, electrochemical method for the rapid, quantitative detection of specific antibodies directly in undiluted, unprocessed blood serum. Our approach employs short, contiguous polypeptide epitopes coupled to the distal end of an electrode-bound nucleic acid “scaffold” modified with a reporting methylene blue. The binding of the relevant antibody to the epitope reduces the efficiency with which the redox reporter approaches, and thus exchanges electrons with, the underlying sensor electrode, producing readily measurable change in current. To demonstrate the versatility of the approach, we fabricated a set of six such sensors, each aimed at the detection of a different monoclonal antibody. All six sensors are sensitive (subnanomolar detection limits), rapid (equilibration time constants ∼8 min), and specific (no appreciable cross reactivity with the targets of the other five). When deployed in a millimeter-scale, an 18-pixel array with each of the six sensors in triplicate support the simultaneous measurement of the concentrations of multiple antibodies in a single, submilliliter sample volume. The described sensor platform thus appears be a relatively general approach to the rapid and specific quantification of antibodies in clinical materials.