Sequence-selective biosensor for DNA based on electroactive hybridization indicators

Abstract
Deoxyribonucleic acid was covalently immobilized onto oxidized glassy carbon electrode surfaces that had been activated using 1-[3-(dimethylamino)-propyl]-3-ethylcarbodimide hydrochloride and N-hydroxysulfosuccinimide. This reaction is selective for immobilization through deoxyguanosine (dG) residues. Immobilized DNA was detected voltammetrically, using tris (2,2'-bipyridyl)cobalt(III) perchlorate and tris (1,10-phenanthroline)cobalt(III) perchlorate (Co(bpy)3(3+) and Co(phen)3(3+). These complexes are reversibly electroactive (1e-) and preconcentrate at the electrode surface through association with double-stranded DNA. Voltammetric peak currents obtained with a poly(dG)poly(dC)-modified electrode depend on [Co(bpy)3(3+)] and [Co(phen)3(3+)] in a nonlinear fashion and indicate saturation binding with immobilized DNA. Voltammetric peak currents for Co(phen)3(3+) reduction were used to estimate the (constant) local DNA concentration at the modified electrode surface; a binding site size of 5 base pairs and an association constant of 1.74 x 10(3) M(-1) yield 8.6 +/- 0.2 mM base pairs. Cyclic voltammetric peak separations indicate that heterogeneous electron transfer is slower at DNA-modified electrodes than at unmodified glassy carbon electrodes. A prototype sequence-selective DNA sensor was constructed by immobilizing a 20-mer oligo (deoxythymidylic acid) (oligo(dT)20), following its enzymatic elongation with dG residues, which yielded the species oligo(dT)20(dG)98. Cyclic voltammograms of 0.12 mM Co(bpy)3(3+) obtained before and after hybridization with poly-(dA) and oligo(dA)20 show increased cathodic peaks after hybridization. The single-stranded form is regenerated on the electrode surface by rinsing with hot deionized water. These results demonstrate the use of electroactive hybridization indicators in a reusable sequence-selective biosensor for DNA.