Membrane permeation and intracellular trafficking of long chain fatty acids: insights fromEscherichia coliand 3T3-L1 adipocytes

Abstract
Long chain fatty acids are important substrates for energy production and lipid synthesis in prokaryotes and eukaryotes. Their cellular uptake represents an important first step leading to metabolism. This step is induced in Escherichia coli by growth in medium containing long chain fatty acids and in murine 3T3-L1 cells during differentiation to adipocytes. Consequently, these have been used extensively as model systems to study the cellular uptake of long chain fatty acids. Here, we present an overview of our current understanding of long chain fatty acid uptake in these cells. It consists of several distinct steps, mediated by a combination of biochemical and physico-chemical processes, and is driven by conversion of long chain fatty acids to acyl-CoA by acyl-CoA synthetase. An understanding of long chain fatty acid uptake may provide valuable insights into the roles of fatty acids in the regulation of cell signalling cascades, in the regulation of a variety of metabolic and transport processes, and in a variety of mammalian pathogenic conditions such as obesity and diabetes.Key words: acyl-CoA synthetase, adipocyte, Escherichia coli, fatty acid, transport, uptake.

This publication has 46 references indexed in Scilit: